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Statement of the problem studied 
 
 Polybenzimidazoles and polyarylenes are strong polymers with glass transition 
temperatures over 300 °C and decomposition temperatures higher than any known 
organic materials.   This makes these materials attractive for flame resistant cloth, high 
strength cable, body armor, and even high performance composites.  However, 
polybenzimidazoles are commercially made in low yields from relatively expensive 
tetraaminoarenes making their wide commercial application uneconomical.   The added 
difficulty and cost of synthesizing substituted tetraminoarenes in order to improve their 
solubility and processing has limited the field of commercial polybenzimidazoles to the 
least substituted system, Celazole.   This project was designed to explore a new method 
for preparing polybenzimidazoles and other polyarylenes that avoids the 
tetraaminoarenes entirely.  This project looked at using the Diels-Alder cycloaddition 
reaction of three novel monomers to prepare the polybenzimidazoles: bis-thiophene 
dioxides, bis-imidazoles, and monomers with both thiophene dioxide and imidazole 
groups.   These monomers were designed with sufficient substituents to allow the 
polymers to remain soluble and processible.  The cycloaddition reaction of imidazoles 
with diene co-monomers has never been used to prepare polybenzimidazoles. 
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Summary of the most important results 
 1) Prepared 3,4-diphenylthiophene dioxide and copolymerized it with 
bismaelimde, 1,1'-(1,4-phenylene)bis(1H-pyrrole-2,5-dione), to afford the first polymer 
in the project. 
 
 2) Prepared a new bis-thiophene dioxide monomer, 4,4'-(1,4-phenylene)bis(3-
phenylthiophene 1,1-dioxide), and copolymerized it with 1,4-diethynylbenzene. 
 
 3) Prepared bis-imidazole monomer, 1,4-di(1H-imidazol-2-yl)benzene, and 
copolymerized it with 4,4'-(1,4-phenylene)bis(3-phenylthiophene 1,1-dioxide) to afford 
the first polybenzimidazole prepared by a Diels Alder cycloaddition polymerization.   
 
 4) Investigated new methods for synthesizing bis-imidazole monomers using 
oxidative coupling. 
 
 5) Started multistep syntheses of two new AB monomers each bearing thiophene 
dioxide and imidazole groups 
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    Technical Report 
Introduction 
 This preliminary research was directed at the Diel-Alder polymerization 
chemistry of two new classes of monomers, thiophene dioxide as diene monomers and 
imidazole as dienophile monomers.   Diels-Alder reactions are a type of cycloaddition 
reaction, most often between a diene with four pi electrons in two double bonds and a 
dienophile with two pi electrons in one double bond (Scheme 1).   
 
Scheme 1.   Diels-Alder cycloaddition reaction 

 
 
The result of the cycloaddition reaction is the formation of a six membered ring with two 
new sigma bonds and one double bond all made at the expense of the three double bonds 
in the precursors.   The reaction is widely used in organic synthesis,1 but has also been 
successfully applied in preparing organic polymers.2   Typically, Diels-Alder 
polymerizations require monomers with at least two reactive groups to allow the 
formation of linear macromolecules.   These can be in monomers with a diene group and 
a dienophile group in the same molecule (AB monomers) or in co-monomers, one with 
two diene groups and one with two dienophile groups that must react with each other to 
afford polymers.   A number of Diels-Alder polymerization chemistries have been 
reported since the 1950's, but one that is still widely investigated today is based on the 
reaction bis-cyclopentadienone's with bis-acetylenes (Scheme 2).3  
 
Scheme 2.   Diels-Alder polymerization of 4,4'-(1,4-phenylene)bis(2,3,5-
triphenylcyclopenta-2,4-dienone) with 1,4-diethynylbenzene. 
 

 
 
This polymerization reaction, actually [4 + 2] cycloaddition followed by a retro [4 + 2] 
cycloaddition or chelatropic elimination of carbon monoxide, allows the formation of 
soluble and processible polyphenylene macromolecules. 

R R

OO

n

240 °C

4,4'-(1,4-phenylene)bis(2,3,5-
triphenylcyclopenta-2,4-dienone)

1,4-diethynylbenzene
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 Polyphenylenes have been of interest as strong materials4 and semiconducting or 
conducting polymers.5   However, because the polymers are composed of a long chain of 
phenylene groups in the backbone, they are generally insoluble and intractable, unless 
substituents are added to twist the phenylene groups out of conjugation.   The result is an 
insulating polymers with glass transition temperatures over 300 °C, thermal stabilities 
over 500 °C, and toughness second only to ultrahigh molecular weight polyethylene.3   
The Diels-Alder polymerizations provide a metal-free reaction to prepare these robust 
polymers, making them more attractive to applications, such as microelectronics, that 
cannot tolerate residual metal catalysts.      
 The most of these Diels-Alder polymerizations have been conducted with the bis-
cyclone and bis-acetylene monomers.3   Other monomers, such as those with pyrones as 
dienes,6 have been used but none have proved as versatile or as easy to synthesis as the 
cyclones.  Unfortunately, the bis-cyclones must have four aryl groups attached to the 
cyclopentadienone ring to prevent it from undergoing a cycloaddition reaction with a 
second cyclopentadienone ring acting as the dienophile.7   This limited the range of 
materials possible and is one of the main reasons for this work.   Despite this limitation, 
the bis-cyclone/bis-acetylene copolymerization reaction has been widely used and has 
spun off such important materials as the SiLK low dielectrics for modern computer 
chips.8 

PBI’s, first reported in the 1960’s, are recognized as being the most thermally, 
hydrolytically and oxidatively stable organic polymers known.9 This class of polymers is 
aromatic with the heterocyclic benzimidazole group, a five membered imidazole ring 
annulated to a benzene ring.  Their aromaticity coupled with some antioxidant properties 
of the imidazole are the source of their stability, but their lack of substituents and flat ring 
structures make PBI’s insoluble10 and difficult to process.  While their stability makes 
them attractive for aerospace applications,11 fire-fighters protective clothing12 and strong 
cable, only poly[2,2’-(m-phenylene)-5,5’-dibenzimidazole] (Celazole™) has ever been 
commercialized due to the difficulties associated with polymerizing and processing the 
materials.13 To date, PBI’s have been prepared by condensation polymerizations from 
either arylene tetraamines and arylene dicarboxylic acids,14 acid chlorides15 or esters16 or 
of diaminoarylcarboxylic acids.17 None have been prepared by Diels Alder 
polymerizations.   
 The targets for this project has been two fold, develop a new diene functionality, 
the thiophene dioxide, that is easier to prepare and can tolerate fewer substituents without 
self-cycloaddition and a new dienophile functionality that will allow benzimidazole ring 
systems to be prepared from the cycloaddition with an imidazole diene.   The goals of the 
project included synthesis of the new monomers and investigation of their Diels-Alder 
polymerization.   While originally we had proposed only the AA, BB copolymerization 
of monomers with two thiophene dioxides with co-monomers with two imidazole groups 
(Scheme 3), we also worked towards the synthesis of AB monomers with one thiophene 
dioxide and one imidazole group per monomer (Scheme 4).    We were also interested in 
the reactivity of both new monomer functionalities with more traditional Diels-Alder 
polymerization functionalities, such as cyclopentadienonyl and ethynyl groups.  
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Scheme 3. Copolymerization of 1,4-di(1H-imidazol-2-yl)benzene (AA) with 4,4'-(1,4-
phenylene)bis(2,3-diphenylthiophene 1,1-dioxide) (BB). 
 

 
 
 
Scheme 4.  Polymerization of 3-(4-(1H-imidazol-2-yl)phenyl)thiophene 1,1-dioxide, an 
AB style monomer. 
 

 
 
 Thiophene dioxides have been known for some time and have been proven to be 
excellent dienes in the Diels-Alder cycloaddition reaction.18   This has included enough 
work to support our hypothesis that the thiophene dioxide diene is less reactive to self-
cycloaddition than the cyclopentadienone even with less than four substitutents.   In fact, 
it may be possible to prepare the thiophene dioxide with only one substituent and not 
have it react until a dienophile is introduced.  Thiophene dioxides are prepared by 
oxidizing thiophenes.19  Thus, we are able to capitalize on the extensive work directed 
towards modified thiophene structures for organic photovoltaic,20 light emitting diode21 
and conducting polymers.22  However, most of the AA bis-thiophene dioxide monomers 
targeted by our group have not been previously reported.   To date only one thiophene 
dioxide has been used in a Diels-Alder polymerization.   In a patent in the 1960's, 3,4-
diphenylthiophene oxide was shown to polymerize with bismaleimide monomers by two 
sequential cycloadditions.23   The resulting thermoplastic material was not fully aromatic 
as the cycloadditions generated a bicyclic structure in the polymer backbone.   The 
polymers were never described in peer-reviewed literature.     
 Imidazole groups have demonstrated reactivity as dienophiles to a number of 
dienes in cycloaddition reactions used in organic synthesis of small organic molecules.24   
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However, they have not been used to prepare polymers by Diels-Alder polymerizations.   
Synthesis of imidazoles has traditionally been by reaction of an aldehyde or nitrile or 
carboxylic acid with a diamine to afford a 4,5-dihydro-1H-imidazole ring followed by 
oxidative removal of two hydrogens in the five-membered ring.25   Alternatively, 
preformed imidazole groups have been coupled directly with aryl halides.26  1,4-Di(1H-
imidazol-2-yl)benzene, one of the simplest bis-imidazole monomers targeted in this 
study, has been previously prepared by both methods as part of new methodology 
development and not as a monomer.  Lastly, mixed AB monomers bearing both 
thiophene dioxide and imidazole have not been previously reported.     
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Results & Discussion 
 The results of the 11 months of research funded in this project will be divided up 
by monomer.   Each monomers synthesis and subsequent polymerization studies will be 
described starting with the thiophene dioxide monomers, followed by the imidazole 
monomers, and finishing with the AB monomers.    
3,4-Diphenylthiophene 1,1-dioxide monomer  
 We began with the synthesis of the simplest of the thiophene dioxide monomers 
to be examined in this study.   3,4-Diphenylthiophene 1,1-dioxide reported in 1964 as 
part of a US patent.14  The monomer was synthesized by base catalyzed condensation of 
diethyl 2,2'-thiodiacetate with benzil, followed by decarboxylation and oxidation of the 
thiophene (Scheme 5).27   Diethyl 2,2'-thiodiacetate was prepared in 25 gram scale from 
the disodium 2,2'-thiodiacetate and ethanol by acid-catalyzed esterification.   Treatment 
of the thiodiacetate ester with alkoxide base resulting in the formation of an enolate 
which condensed with benzil.  Elimination of water afforded half of the desired ring and 
an intramolecular aldol with the enolate from the second acetate group and the second 
carbonyl in the benzil, followed by loss of water, gave the desired product with two 
carboxylate groups.    The carboxylic acid groups were removed by decarboxylation in 
quinoline with copper oxide at 180 °C to afford the 3,4-diphenyl thiophene.   Oxidation 
with m-chloroperoxybenzoic acid afforded the 3,4-diphenylthiophene dioxide in good 
yield.   
 
Scheme 5.   Synthesis of 3,4-diphenylthiophene dioxide.18 

 

 
 

We also began the preparation of 3,4-diphenylthiophene dioxide from 3-phenylthiophene 
(Scheme 6) but have not moved past the 3-bromo-4-phenylthiophene at this state.  In 
theory, preparing 3,4-diphenylthiophene dioxide directly from thiophene should be less 
expensive than the procedure from thiodiacetate (Scheme 5).   Scheme 6 represents 
essentially the same chemistry we would use from thiophene, but with the less volatile 
bromothiophene as the starting material for the undergraduate on the project to work 
with.    More importantly, this synthetic sequence creates key intermediates for the 
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synthesis of future targets with varying levels of substituents: 2,5-dibromo-3-
phenylthiophene as a precursor to triaryl substituted monomers, 2,3,5-tribromo-4-
phenylthiophene as a precursor to tetra-substituted monomers, and 3-bromo-4-
phenylthiophene as a precursor to di-substituted monomers.    
 
Scheme 6.   Alternative preparation of 3,4-diphenylthiophene dioxide 
 

 
 
 3,4-Diphenylthiophene dioxide was copolymerized with the bis-maleimide, 1,1'-
(1,4-phenylene)bis(1H-pyrrole-2,5-dione) to afford the first polymer in the project 
(Scheme 7).    
 
Scheme 7.   Copolymerization of bis-maleimide with 3,4-diphenylthiophene dioxide. 
     

 
 
 As described by the patent in 1961,14 the polymer is a thermoplastic.   However, what 
was not described was the dark blue color observed during the polymerization that may 
have been the result of charge transfer.  If this is the case, then it may be possible that the 
cycloaddition is not proceeding according to a normal pericyclic mechanism as expected.   
Charge transfer complexes have been observed in cycloadditions before and have been 
used as evidence for ionic intermediates in a multistep cycloaddition reaction.  This effort 
corroborates the patent report from 1961 and will be reproduced and expanded before 
reporting the results in a published manuscript.   Diels-Alder cycloaddition of 3,4-
diphenylthiophene dioxide with commercially available phenyl imidazole as a model 
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reaction turned deep, dark blue with formation of cycloadduct, just as with the 
polymerization with the bis-maleimide. 
4,4'-(1,4-phenylene)bis(3-phenylthiophene 1,1-dioxide) 
 This is the first of the monomers prepared with two thiophene dioxide groups 
attached to a bridging organic group.   The preparation mirrored that of the previously 
described 3,4-diphenylthiophene dioxide save we used 2,2'-(1,4-phenylene)bis(1-
phenylethane-1,2-dione) instead of benzil (Scheme 8).  
 
Scheme 8. Synthesis of new phenylene bridged thiophene and thiophene dioxides. 

 
 
 
 
The 2,2'-(1,4-phenylene)bis(1-phenylethane-1,2-dione) was prepared from 
terephthaldehyde and benzaldehyde in a direct benzoin condensation.  We accidently 
prepared a new polymer from terephthaldehyde and benzaldehyde when we used a 1:1 
stoichiometry instead of the desired 1:2 stoichiometry.   The polymer formed as a viscous 
reddish orange mass even in solution suggesting that the molecular weight was fairly 
high.   The polymer appeared to be a thermoplastic when dry, but was not further 
characterized.     With the correct stoichiometry the reaction produced the desired and 
previously unreported 4,4'-(1,4-phenylene)bis(3-phenylthiophene-2,5-dicarboxylic acid) 
that we decarboxylated to afford the new bridged thiophene compound, 1,4-bis(4-
phenylthiophen-3-yl)benzene.  Oxidation with mCPBA in methylene chloride afforded 
the targeted new monomer, 4,4'-(1,4-phenylene)bis(3-phenylthiophene 1,1-dioxide). 
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Small scale polymerization of 4,4'-(1,4-phenylene)bis(3-phenylthiophene 1,1-dioxide) 
was attempted with 1,4-diethynylbenzene in diphenyl ether at 240 °C to afford a creamy 
white polymer (Scheme 9). 
 
Scheme 9.   Copolymerization of 4,4'-(1,4-phenylene)bis(3-phenylthiophene 1,1-dioxide) 
with 1,4-diethynylbenzene. 
 

 
 
 
1,4-di(1H-imidazol-2-yl)benzene  
 1,4-Di(1H-imidazol-2-yl)benzene has been prepared from terephthaldehyde and 
diaminoethane to afford the 1,4-bis(4,5-dihydro-1H-imidazol-2-yl)benzene that is 
subsequently oxidized to the desired monomer with either potassium permanganate28 or 
palladium on carbon.    
 
Scheme 10.  Synthesis of bis-imidazole monomer, 1,4-di(1H-imidazol-2-yl)benzene 
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Scheme 11.  Oxidative coupling of aryl iodides and imidazole. 
 

 
 
Scheme 12. Oxidative coupling of aryl iodides and N-methylimidazole. 
 

 
 
Pure N-methylimidazole has not been isolated at present.  
 
  Diels-Alder cycloaddition of phenyl imidazole with 3,4-diphenylimidazole 
affords a cycloadduct.   In comparison, the cycloaddition of phenyl imidazole with 
tetraphenyl cyclopentadienone undergoes no reaction even up to 260 °C.  The phenyl 
groups are apparently too bulky for the cycloaddition to proceed.   Reaction of the bis-
imidazole with 4,4'-(1,4-phenylene)bis(3-phenylthiophene 1,1-dioxide) (Scheme 13) 
affords an insoluble white precipitate.  It appears that the two phenyl groups per repeat 
unit are insufficient to break up intramolecular forces that successfully keep the polymer 
from dissolving.   This hypothesis would require preparation of one of the monomers 
with three phenyl groups per thiophene dioxide group to test. 
 
Scheme 13.   Diels Alder polymerization of 1,4-di(1H-imidazol-2-yl)benzene  with 4,4'-
(1,4-phenylene)bis(3-phenylthiophene 1,1-dioxide). 
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disadvantage is that the synthesis can be more complicated. 3-(4-(1H-Imidazol-2-
yl)phenyl)thiophene 1,1-dioxide has a thiophene dioxide and an imidazole group attached 
in para regiochemistry about a benzene group.   The synthesis (Scheme 14) starts with 
Susuki coupling of 4-bromobenzaldehyde with 3-thiopheneboronic acid to afford 4-
(thiophen-3-yl)benzaldehyde, a hither-to-now, unknown compound.   The next step, 
which has not been taken yet, is the formation of the diaza ring and oxidation of both it 
and the sulfur to afford the target monomer.   Because conversion of the aldehyde to the 
diaza ring requires IBX to oxidize the carbon to the oxidation state of a carboxylic acid, it 
may be possible to combine all of the remaining steps into a single reaction.  
 
Scheme 14.  Synthesis of 3-(4-(1H-Imidazol-2-yl)phenyl)thiophene 1,1-dioxide, the first 
AB monomer.   Dashed arrows represent reactions that have not been finished. 
  

  
 
2-(1H-imidazol-2-yl)-4-phenylthiophene 1,1-dioxide 
 In parallel to the synthesis of 3-(4-(1H-Imidazol-2-yl)phenyl)thiophene 1,1-
dioxide, we have also begun the synthesis of 2-(1H-imidazol-2-yl)-4-phenylthiophene 
1,1-dioxide from 4-phenylthiophene-2-carbaldehyde.  At present, we have completed the 
first step with the formation of 2-(4-phenylthiophen-2-yl)-4,5-dihydro-1H-imidazole. 
 
Scheme 15.   Synthesis of 2-(1H-imidazol-2-yl)-4-phenylthiophene 1,1-dioxide. 
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Future Directions 
 Obviously, there are a number of monomers, such as 3-(4-(1H-Imidazol-2-
yl)phenyl)thiophene 1,1-dioxide and 3-(4-(1H-Imidazol-2-yl)phenyl)thiophene 1,1-
dioxide, whose syntheses have not been completed.   There are also AA monomers with 
different numbers of phenyl groups that need to be synthesized.  The trisubstituted 
thiophenes are the most urgent targets considering the potential solubility problems 
observed with the di-substituted thiophene monomer.   It would be useful to determine 
the substituent effects on the reactivity of the thiophene monomers and the solubility of 
their polymers.  Once the AB monomers are finished, their polymerization chemistry 
would have be studied.  It would be advantageous to conduct polymerizations of both 
AA-BB and AB monomer systems under high pressure to see if the polymerizations 
could be conducted at lower temperatures and if thermally unreactive monomers, such as 
the 4,4'-(1,4-phenylene)bis(2,3,5-triphenylcyclopenta-2,4-dienone) and 1,4-di(1H-
imidazol-2-yl)benzene system, would polymerize at pressures where Diels-Alder 
reactions are known to be accelerated.   Lastly, it would be useful to prepare sufficient 
polyarylenes and polybenzimidazoles to examine their oxidative stability, particularly in 
light of the proposed anti-oxidant characteristics of the dihydrobenzimidazole 
functionality, and complete a thorough study of their thermo-mechanical properties to 
gauge the polymers' potential for high temperature applications. 
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